热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

损失|式子_机器学习中的损失函数(着重比较:hingelossvssoftmaxloss)

本文由编程笔记#小编为大家整理,主要介绍了机器学习中的损失函数(着重比较:hingelossvssoftmaxloss)相关的知识,希望对你有一定的参考价值。
本文由编程笔记#小编为大家整理,主要介绍了机器学习中的损失函数 (着重比较:hinge loss vs softmax loss)相关的知识,希望对你有一定的参考价值。



1. 损失函数

损失函数(Loss function)是用来估量你模型的预测值

f(x)
与真实值

Y
的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示。损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数的重要组成部分。模型的风险结构包括了风险项正则项,通常如下所示:




θ=argminθ1Ni=1NL(yi,f(xi;θ))+λ Φ(θ)



其中,前面的均值函数表示的是经验风险函数,



L
代表的是损失函数,后面的 Φ 是正则化项(regularizer)或者叫惩罚项(penalty term),它可以是L1,也可以是L2,或者其他的正则函数。整个式子表示的意思是
找到使目标函数最小时的

θ


2. 常用损失函数

常见的损失误差有五种:
1. 铰链损失(Hinge Loss):主要用于支持向量机(SVM) 中;
2. 互熵损失 (Cross Entropy Loss,Softmax Loss ):用于Logistic 回归与Softmax 分类中;
3. 平方损失(Square Loss):主要是最小二乘法(OLS)中;
4. 指数损失(Exponential Loss) :主要用于Adaboost 集成学习算法中;
5. 其他损失(如0-1损失,绝对值损失)


2.1 Hinge loss

Hinge loss 的叫法来源于其损失函数的图形,为一个折线,通用的函数表达式为:




L(mi)=max(0,1mi(w))



表示如果被正确分类,损失是0,否则损失就是



1mi(w)

在机器学习中,Hing 可以用来解 间距最大化 的问题,最有代表性的就是SVM 问题,最初的SVM 优化函数如下:




argminw,ζ12||w||2+Ciζist.yiwTxi1ζiζi0



将约束项进行变形,则为:





ζi1yiwTxi



则损失函数可以进一步写为:





J(w)=12||w||2+Cimax(0,1yiwTxi)=12||w||2+Cimax(0,1mi(w))=12||w||2+CiLHinge(mi)



因此,
SVM 的损失函数可以看作是 L2-norm 和 Hinge loss 之和

2.2 Softmax Loss

有些人可能觉得逻辑回归的损失函数就是平方损失,其实并不是。平方损失函数可以通过线性回归在假设样本是高斯分布的条件下推导得到,而逻辑回归得到的并不是平方损失。在逻辑回归的推导中,它假设样本服从伯努利分布(0-1分布),然后求得满足该分布的似然函数,接着取对数求极值等等。而逻辑回归并没有求似然函数的极值,而是把极大化当做是一种思想,进而推导出它的经验风险函数为:最小化负的似然函数(即

maxF(y,f(x))minF(y,f(

推荐阅读
  • 机器学习实践:逻辑回归与过拟合控制
    本文深入探讨了逻辑回归在机器学习中的应用,并详细解释了如何通过正则化等方法来有效避免模型的过拟合问题。 ... [详细]
  • AI炼金术:KNN分类器的构建与应用
    本文介绍了如何使用Python及其相关库(如NumPy、scikit-learn和matplotlib)构建KNN分类器模型。通过详细的数据准备、模型训练及新样本预测的过程,展示KNN算法的实际操作步骤。 ... [详细]
  • 机器学习(ML)三之多层感知机
    深度学习主要关注多层模型,现在以多层感知机(multilayerperceptron,MLP)为例,介绍多层神经网络的概念。隐藏层多层感知机在单层神经网络的基础上引入了一到多个隐藏 ... [详细]
  • 本打算教一步步实现koa-router,因为要解释的太多了,所以先简化成mini版本,从实现部分功能到阅读源码,希望能让你好理解一些。希望你之前有读过koa源码,没有的话,给你链接 ... [详细]
  • PHP 5.5.31 和 PHP 5.6.17 安全更新发布
    PHP 5.5.31 和 PHP 5.6.17 已正式发布,主要包含多个安全修复。强烈建议所有用户尽快升级至最新版本以确保系统安全。 ... [详细]
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
  • H5技术实现经典游戏《贪吃蛇》
    本文将分享一个使用HTML5技术实现的经典小游戏——《贪吃蛇》。通过H5技术,我们将探讨如何构建这款游戏的两种主要玩法:积分闯关和无尽模式。 ... [详细]
  • TCP协议中的可靠传输机制分析
    本文深入探讨了TCP协议如何通过滑动窗口和超时重传来确保数据传输的可靠性,同时介绍了流量控制和拥塞控制的基本原理及其在实际网络通信中的应用。 ... [详细]
  • 软件测试行业深度解析:迈向高薪的必经之路
    本文深入探讨了软件测试行业的发展现状及未来趋势,旨在帮助有志于在该领域取得高薪的技术人员明确职业方向和发展路径。 ... [详细]
  • 本周三大青年学术分享会即将开启
    由雷锋网旗下的AI研习社主办,旨在促进AI领域的知识共享和技术交流。通过邀请来自学术界和工业界的专家进行在线分享,活动致力于搭建一个连接理论与实践的平台。 ... [详细]
  • 使用 MATLAB 将高光谱数据集转换为伪彩色 CIE 图像
    本文介绍了一种方法,通过 MATLAB 将高光谱数据集的每个维度的图像转换为伪彩色 CIE 图像。用户只需指定波段即可完成转换。 ... [详细]
  • 深入理解Java SE 8新特性:Lambda表达式与函数式编程
    本文作为‘Java SE 8新特性概览’系列的一部分,将详细探讨Lambda表达式。通过多种示例,我们将展示Lambda表达式的不同应用场景,并解释编译器如何处理这些表达式。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • 本文为初学者提供了一条清晰的学习路线,帮助他们逐步成长为优秀的Web开发人员。通过十个关键步骤,涵盖从基础到高级的各个方面,确保每位学习者都能找到适合自己的学习方向。 ... [详细]
  • 本文介绍了Go语言中正则表达式的基本使用方法,并提供了一些实用的示例代码。 ... [详细]
author-avatar
手机用户2502940097
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有